で、Windows10環境にTensorflow+Kerasをインストールする。
Ubuntu16とデュアルブートするやり方もあったのだけれど、漫画自炊などはWindows環境でやっているので切り替えがめんどくさいと思った。
それから、仮想環境だとDeepLearningでGPUを叩けなくなり、それはそれで困るから。
しょぼいけどGeForce GTX970が付いているので、CPU計算だけよりはマシだろう。
で、まずやったこと。
1)Windows版のPython3.6をインストール
→これはネット上に参考資料があるから割愛。
https://www.python.org/downloads/windows/
から64ビット版をダウンロードしてインストール。
コツは、
・インストール時にCustomize Installationを選択すること。
・Add Python 3.6 to Pathにチェックを入れること。
くらい。インストール先を変えたいときなんかは適宜変更するといいね。
2)PowerShellでVimを使えるようにする
→まずはVimをダウンロードして圧縮ファイルを展開。
https://www.kaoriya.net/software/vim/
僕はディレクトリをProgram Filesの下に移動させた。
エイリアスの設定に手間取り、今もちょっと動きが微妙……。
・Pathを通す。
・PowerShellを立ち上げて$PROFILEの有無を確認。
PS > $PROFILE
C:\Users\MyUserName\Documents\WindowsPowerShell\Microsoft.PowerShell_profile.ps1
環境によっては設定ファイルどころかディレクトリすらない。
僕の場合もWindowsPowerShellのディレクトリがなかった。
で、Microsoft.PowerShell_profile.ps1に下記の行を追加した。
New-Alias vi "C:\Program Files\vim\vim.exe"
New-Alias vim "C:\Program Files\vim\vim.exe"
function view() {"C:\Program Files\vim\vim.exe" -R $args}
ディレクトリの部分は、Vimを置いた場所によって変わる。
・スクリプトの実行権限を変更する。
PS > Get-ExecutionPolicy
Restricted
と表示されたら制限がかかっている。
PowerShellを管理者モードで立ち上げて、次のコマンドを実行。
PS > Set-ExecutionPolicy RemoteSigned
PowerShellを立ち上げなおして、Vimが起動するならばとりあえずは成功かな。
3)個人的な理由でPowerShell上で動くSSHクライアントをインストール
Windows10の「設定」から「更新とセキュリティ」を選択。
「開発者向け」で「開発者モード」のボタンを選択。
「設定」に戻って「アプリと機能」の中の「オプション機能の管理」を選択。
「OpenSSH Client(Beta)」を選択してインストール。
これでPowerShell上でSSH機能が利用可能になる。
それにしても、いつBetaが取れるんだろうか……。
4)個人的な理由で公開鍵暗号を作成
Mac、Linux勢と同じく、まずは.sshディレクトリを作るところから。
作ったディレクトリはユーザディレクトリの直下にできて、かつ丸見えなのに軽い違和感。
PS > ssh-keygen
としたらEd25519方式の鍵が生成された。
RSA鍵にしようとすると弾かれたので、Ed25519の公開鍵をサーバ側に送って設定。
Windows10環境だとEd25519方式がデフォルトになっているんだなっと。
5)SSHサーバに楽に接続できるようにconfigファイルを作って設置
→これをやりたいためにVimをインストールしたんだが、別にnotepadで作っても良かったのな。
6)TnsorFlowをインストールする
GPUを使いたいので、CUDAとcuDNNのインストールは絶対必要。
どういうわけだか自分のPCにはCUDA9.0がインストール済みだった。
cuDNNをNvidiaからダウンロード。展開したファイルをCUDAのディレクトリに移動。
で、TensorFlowをインストールする。
Windows PowerShell
Copyright (C) Microsoft Corporation. All rights reserved.
PS > pip3 install --upgrade tensorflow-gpu
Collecting tensorflow-gpu
Downloading tensorflow_gpu-1.5.0-cp36-cp36m-win_amd64.whl (82.1MB)
100% |████████████████████████████████| 82.1MB 17kB/s
Collecting tensorflow-tensorboard<1.6.0,>=1.5.0 (from tensorflow-gpu)
Downloading tensorflow_tensorboard-1.5.1-py3-none-any.whl (3.0MB)
100% |████████████████████████████████| 3.0MB 467kB/s
Collecting absl-py>=0.1.6 (from tensorflow-gpu)
Downloading absl-py-0.1.10.tar.gz (79kB)
100% |████████████████████████████████| 81kB 7.1MB/s
Collecting protobuf>=3.4.0 (from tensorflow-gpu)
Downloading protobuf-3.5.1-py2.py3-none-any.whl (388kB)
100% |████████████████████████████████| 389kB 3.2MB/s
Collecting numpy>=1.12.1 (from tensorflow-gpu)
Downloading numpy-1.14.1-cp36-none-win_amd64.whl (13.4MB)
100% |████████████████████████████████| 13.4MB 108kB/s
Collecting wheel>=0.26 (from tensorflow-gpu)
Downloading wheel-0.30.0-py2.py3-none-any.whl (49kB)
100% |████████████████████████████████| 51kB 6.4MB/s
Collecting six>=1.10.0 (from tensorflow-gpu)
Downloading six-1.11.0-py2.py3-none-any.whl
Collecting html5lib==0.9999999 (from tensorflow-tensorboard<1.6.0,>=1.5.0->tensorflow-gpu)
Downloading html5lib-0.9999999.tar.gz (889kB)
100% |████████████████████████████████| 890kB 1.4MB/s
Collecting markdown>=2.6.8 (from tensorflow-tensorboard<1.6.0,>=1.5.0->tensorflow-gpu)
Downloading Markdown-2.6.11-py2.py3-none-any.whl (78kB)
100% |████████████████████████████████| 81kB 6.6MB/s
Collecting werkzeug>=0.11.10 (from tensorflow-tensorboard<1.6.0,>=1.5.0->tensorflow-gpu)
Downloading Werkzeug-0.14.1-py2.py3-none-any.whl (322kB)
100% |████████████████████████████████| 327kB 3.8MB/s
Collecting bleach==1.5.0 (from tensorflow-tensorboard<1.6.0,>=1.5.0->tensorflow-gpu)
Downloading bleach-1.5.0-py2.py3-none-any.whl
Collecting setuptools (from protobuf>=3.4.0->tensorflow-gpu)
Downloading setuptools-38.5.1-py2.py3-none-any.whl (489kB)
100% |████████████████████████████████| 491kB 2.7MB/s
Installing collected packages: six, html5lib, wheel, numpy, markdown, setuptools, protobuf, werkzeug, bleach, tensorflow-tensorboard, absl-py, tensorflow-gpu
Running setup.py install for html5lib ... done
Found existing installation: setuptools 28.8.0
Uninstalling setuptools-28.8.0:
Successfully uninstalled setuptools-28.8.0
Running setup.py install for absl-py ... done
Successfully installed absl-py-0.1.10 bleach-1.5.0 html5lib-0.9999999 markdown-2.6.11 numpy-1.14.1 protobuf-3.5.1 setuptools-38.5.1 six-1.11.0 tensorflow-gpu-1.5.0 tensorflow-tensorboard-1.5.1 werkzeug-0.14.1 wh
eel-0.30.0
PS >
まあ誰にでもできる簡単インストールだった。
では、TensorFlowが動作するのか、GPUを認識しているのかテストしてみよう。
まずはPowerShell上でPythonを起動する。
PS > Python
>>> import tensorflow as tf
>>> hello = tf.constant('Hello, TensorFlow')
>>> sess = tf.Session()
2018-02-28 11:07:39.474339: I C:\tf_jenkins\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\core\platform\cpu_feature_guard.cc:137] Your CPU supports instructions that this TensorFlow binary was not compiled to
use: AVX AVX2
2018-02-28 11:07:39.829653: I C:\tf_jenkins\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\core\common_runtime\gpu\gpu_device.cc:1105] Found device 0 with properties:
name: GeForce GTX 970 major: 5 minor: 2 memoryClockRate(GHz): 1.2155
pciBusID: 0000:01:00.0
totalMemory: 4.00GiB freeMemory: 3.31GiB
2018-02-28 11:07:39.835622: I C:\tf_jenkins\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\core\common_runtime\gpu\gpu_device.cc:1195] Creating TensorFlow device (/device:GPU:0) -> (device: 0, name: GeForce GT
X 970, pci bus id: 0000:01:00.0, compute capability: 5.2)
>>> print(sess.run(hello))
b'Hello, TensorFlow'
>>>
動作している模様。
GeForce GTX970を認識していることもわかる。
7)Kerasをインストールする
Windows PowerShell
Copyright (C) Microsoft Corporation. All rights reserved.
PS > pip install keras
Collecting keras
Downloading Keras-2.1.4-py2.py3-none-any.whl (322kB)
100% |████████████████████████████████| 327kB 1.8MB/s
Requirement already satisfied: numpy>=1.9.1 in c:\users\hogehoge\appdata\local\programs\python\python36\lib\site-packages (from keras)
Collecting scipy>=0.14 (from keras)
Downloading scipy-1.0.0-cp36-none-win_amd64.whl (30.8MB)
100% |████████████████████████████████| 30.8MB 46kB/s
Requirement already satisfied: six>=1.9.0 in c:\users\hogehoge\appdata\local\programs\python\python36\lib\site-packages (from keras)
Collecting pyyaml (from keras)
Downloading PyYAML-3.12.tar.gz (253kB)
100% |████████████████████████████████| 256kB 4.6MB/s
Building wheels for collected packages: pyyaml
Running setup.py bdist_wheel for pyyaml ... done
Stored in directory: C:\Users\hogehoge\AppData\Local\pip\Cache\wheels\2c\f7\79\13f3a12cd723892437c0cfbde1230ab4d82947ff7b3839a4fc
Successfully built pyyaml
Installing collected packages: scipy, pyyaml, keras
Successfully installed keras-2.1.4 pyyaml-3.12 scipy-1.0.0
PS >
なんかしれっとインストールは終わったみたいだ。
僕の使っているWindows10が、あらかじめPythonのモジュール等が入っていて、インストーラーが吐くかもしれないエラーが回避されていた可能性はある。
それにしても、Bash on Ubuntu on Windowsやら、PowerShellやら、コマンドプロンプトやら、WindowsとUnixの操作体系の混じったようなシェルを使っていると、インストールから含めてわけわかんなくなってくる。
0 件のコメント:
コメントを投稿